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ABSTRACT

The architecture and structures used by the MacPitts
silicon compiler to design integrated circuits are described,
and the capabilities and limitations of the compiler are
discussed. The performance of several combinational and
pipeline adders designed by MacPitts and a hand-crafted
pipeline adder are compared. Several different MacPitts
design errors are documented. Tutorial material is presented
to aid in using the MacPitts interpreter and to illustrate

timing analysis of MacPitts-designed circuits using the

program Crystal.
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I. INTRODUCTION

NI I Y oo

The design of very large scale integrated (VLSI) circuits
is a very time consuming process. To reduce the time and
cost required to design VLSI circuits various silicon
compilers have been developed [Ref. 1]. One of these
compilers, the MacPitts silicon compiler, was developed at R
MIT Lincoln Laboratory in 1981-1982 [Refs. 2 and 3]. E?

The MacPitts silicon compiler is a large and complex A
computer program that frees the circuit designer from having %

to worry about the details of the actual design and layout

N e

of the circuit. From a short program (usually less than

fifty lines) that contains a functional description of the :
desired circuit, MacPitts completely designs an implementa-
tion of the VLSI chip and outputs a file in Caltech
Intermediate Form (CIF) that describes the circuit. The CIF E
file can be used to perform a functional simulation or a E
timing analysis of the circuit. After verifying the Es
functional correctness of the circuit the CIF file can be i
sent to a silicon foundry so that the circuit can be S
fabricated. §
.
The MacPitts compiler has been used previously at the )

’

fEu T
L

A x's s

Naval Postgraduate School by Carlson [Ref. 4] to design a

oY

« s

pipeline multiplier circuit. Carlson's thesis contains a
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The one-bit full adder circuit in Figure 2.5 shows how
a complex function can be implemented by putting several
different organelles together. In this case two XOR
organelles and one NAND organelle are used. Figure 2.6
shows how the one-bit adder is used by MacPitts to build a
two-bit full adder circuit with carry in.

Two different structures are used in the data-path to
define and store organelle inputs and outputs. They are the
internal port and the register, and both are the same size
as the data word. Internal ports are used primarily to
transfer the output of an organelle to another organelle or
to the Weinberger array within the same clock cycle or state
period [Ref. 2]. Registers are used to store word size data
elements. A one-bit register organelle consists of a
master-slave flip-flop, as shown in Figure 2.7, that is
controlled by the MacPitts three-phase clock [Ref. 3]. This
structure allows the output of the register to be valid
during a clock cycle even though a new input value could be
in the process of being clocked into the register. The
enable line in Figure 2.7 is used to control which clock
cycles the register samples the input line for data storage.
A memory refresh cycle is performed if new data is not
stored during a clock cycle. If data is to be stored in

every clock cycle the enable line is connected to Vdd.

22
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by the ordering of the word operations specified in the .mac
program. The first word operation encountered by the
compiler in the .mac program is the first organelle in the
data-path and so on. The compiler takes into account the
size requirements of each organelle to scale the amount of
space between organelles to allow enough room for connection
lines, control lines, power lines, and local interconnection
buses. Power and ground buses are also sized based on
organelle power requirements [Ref. 3].

The routing of data to and from the data-path is very
inefficient and requires many data lines to be longer than
necessary. As seen in Figure 2.1, the chip pads are placed
only on the top, right and bottom sides of the chip. Data
entering the chip on input ports and exiting the chip
through output ports is routed from the left side of the
data-path. This causes very long data lines. Data from the
data-path to the Weinberger array is routed from the bottom
side of the data-path to the top side of the array.

All arithmetic and boolean function organelles are
implemented using three basic gate structures. They are the
NAND, NOR and inverter. Figure 2.3 shows an AND organelle
that is made from a NAND gate and an inverter. In Figure 2.4
an XOR function is implemented using NAND gates. An OR gate
is implemented from a NOR gate and an inverter and the

boolean EQU function is implemented using four NOR gates.

20
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C. THE DATA-PATH

The data-path is the unit where all word size operations
are performed. These operations consist of arithmetic
functions (addition, subtraction, incrementing, decrementing
and equals), boolean functions (and, or, not, nand, nor,
xor and equ), data shifting operations, comparison tests and
data storage and transfer using registers and ports [Refs. 2
and 3]. The structure consisting of a one-bit slice of the

above operations is referred to as an organelle and the LISP

code used by the MacPitts compiler to generate each organelle

can be found in the library and organelle sections of the
MacPitts source code listing.

The size of the data-path is determined by the number
of bits in the data word (specified at the beginning of the
.mac program) and the number of word size operations to be
performed. The number of bits in the data word specifies
the height of the data-path. The larger the data word the
taller the data-path. The width is determined by the number
of functions performed. When a specific function is to be
performed in the data-path the organelle that performs that
function is placed in the data-path. Replicas of that
organelle (one for each bit of the data word) are stacked on
top of each other. The organelle for the most significant
bit of the data word is on the bottom of the stack and the
organelle for the least significant bit is on the top. The

ordering of the organelles in the data-path is determined

19
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corner of the chip and continuing in a clockwise direction.
The version of the MacPitts silicon compiler installed at the
Naval Postgraduate School will not place pads on the left edge

of the chip. A newer version of the compiler that is

| SRR | ) SO

available commercially places pads on all four sides of the

chip. All output pads are super buffered but the input data

3

% % YTy

and clock pads are not.

Along with the ground and power pads, the three-phase
clock pads must also be defined in all MacPitts programs
even though the clock may not be used in the circuit. The
clock bus is always laid out on the chip. The MacPitts

compiler uses a three-phase overlapping clock scheme where K

N

R
%

"

re
o

the clock period is divided into five segments as shown in

!l
Figure 2.2. This unusual clock scheme is used to drive the d

data storage registers and flags (see paragraphs C and E
below) and according to [Ref. 4] allows a more compact
layout of the registers and flags.

A reset pad must also be defined if the "process'" form
is used in the .mac program even if the reset function is
not used anywhere in the program. This is because the
MacPitts compiler may use the reset signal in its internal
algorithms when it generates the chip [Ref. 2]. If the
"always' form is the only form used in the .mac program the

reset pad is not required.

17
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II. THE MACPITTS DESIGN ARCHITECTURE

A. INTRODUCTION

The MacPitts design structure consists of five main
components. They are the chip design frame with pads, the
data-path, the sequencer, the Weinberger array and the flags
block (see Figure 2.1). Input ports or signals are used to
bring input data into the chip and output ports or signals
are used to output data from the chip. The difference
between ports and signals is that a port has as many bits as
the data word defined by the programmer in the MacPitts .mac

program and a signal is only a one-bit data element.

B. THE DESIGN FRAME

The MacPitts compiler was designed to have no limit on
the size of a circuit that it would design although large
circuits may take several days of computer time to be
completed. The design constraints that must be used for
practical designs are the MOSIS chip size and pad number
fabrication limitations. The current MOSIS limitation for
the chip size is 7900 x 9200 microns and.the maximum number
of pads is 84.

All pads are defined in the ''def" section of the MacPitts
.mac program and are placed around the chip in the order

specified in the program starting in the upper lefthand
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Hauenstein adder [Ref. 5] along with a tutorial on Crystal.
Design errors that have been found in MacPitts designs are
detailed in Chapter V. Tutorial material on the MacPitts
interpreter is found in Appendix A.
14
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It was decided to use the MacPitts compiler to design

various adder circuits so that performance (chip size, power
and speed) comparisons could be made between the MacPitts
designs and a hand-crafted pipeline adder circuit designed
by Conradi and Hauenstein [Ref. 5]. Crystal, the VLSI
timing analysis program developed at the University of
California at Berkeley [Ref. 6], was used to analyze the
timing requirements of all circuits being compared. Since
Crystal had never been used at the Naval Postgraduate School
before, a procedure on how to use Crystal to analyze MacPitts
designs had to be developed. This required adapting the
basic Crystal Commands to the unconventional MacPitts
three-phase overlapping clock scheme.

The third research goal was to obtain a more complete
understanding and description of the MacPitts interpreter
than currently available in the literature. Reference 2
and reference 4 describe how to use the interpreter, but a
detailed description of the interpreter commands and error
statements and its capabilities and limitations is not
available.

Chapter II of this thesis describes the basic circuit
building blocks of the MacPitts compiler. The design of
several combinational and pipeline adder circuits is
presented in Chapter III. Chapter IV lists performance

comparisons between the MacPitts adders and the Conradi and
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description of the MacPitts language, which is used to write
the .mac program that contains a functional description of
the circuit to be designed by the compiler. Also, a
detailed procedure on how to write the .mac program is
given. Carlson also shows how to use the MacPitts inter-
preter to test the functional correctness of the .mac program
before the circuit design is performed by the compiler. In
addition, Carlson's thesis gives a detailed listing of the
activities in the MacPitts design cycle used to design VLSI
circuits. The design cycle includes generating the .mac
program, submitting the .mac program to the compiler for
circuit design and performing a design rule check and
functional event simulation on the designed circuit.

Since a good understanding of how to use the MacPitts
silicon compiler to design VLSI circuits was obtained by -
Carlson [Ref. 4] it was decided that the next logical step
was to learn more about the MacPitts architecture and to
make some performance comparisons between various MacPitts
and hand-crafted designs. The first goal of this thesis
research was to determine what basic building blocks the
compiler used to design VLSI circuits and how these building

blocks are used to implement different circuits. Also, an

'9 understanding of how the statements in the .mac program
EE determine the structure of the MacPitts designed circuit was
f; desired.
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D. THE SEQUENCER

The sequencer is a mini data-path and is placed on the
chip between the data-path and the flags block. If the .mac
program contains a process whose value depends on the system
state, a sequencer is placed on the chip to control the
system state of the chip. The sequencer usually contains
registers to store the current system state. Every clock
cycle the current system state is transferred to the
Weinberger array from the registers and then the new system
state is transferred from the Weinberger array to the
sequencer for storage. Additional details about the

sequencer are given in [Refs. 3, 7 and 8].

E. THE FLAGS BLOCK

Flags have a similar function to registers, but they
store only one-bit of data from the Weinberger array. Flags
also have a master-slave flip-flop structure but extra
inverters are used in the flags block to drive the clock
signals because there may be as many as twenty or thirty
flags in the flags block (see Figure 2.8). The enable line
of a flag performs the same function as the enable line of a
register. Flags are placed side by side with the flags block
increasing in width as more flags are needed. The rightmost
structures in the flags block are the six inverters used to
drive the three clock lines (see Figure 2.9). The leftmost

flag in the flags block is the first flag encountered by the
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oy placed on the right of the previous flag. Since the flags
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compiler in the "always'" or ''process' section of the .mac

program. Each subsequent flag 2ncountered by the compiler is

block cannot expand in the vertical direction there is
wasted space on the chip above the flags block if the
data-path or sequencer is taller than the flags block. Also,
if the .mac program requires a large number of flags the
width of the flags block may make the dimension of the chip

exceed the MOSIS chip size constraints.

F. THE WEINBERGER ARRAY

The Weinberger array, or control unit, or a MacPitts

designed chip is the unit where all chip control signals are
generated and bit siZze boolean functions are performed. All a
inputs and outputs to the array are routed to the top of the

array. Input and output signal lines are routed around the

left side of the array and then to the top.

The data lines connecting the Weinberger array to the
data-path, sequencer, and flags block are called the "river".
The algorithm that routes the '"river'" does not allow the
data lines to cross each other so the left-to-right ordering
of the functions performed in the array is determined by the
left-to-right ordering of the data transferred from the
data-path, sequencer and flags block to the array. Array
functions that use data from the data-path are placed in the

left section of the array, array functions that use data from

29
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the sequencer are placed in the center section of the array
and array functions that use data from the flags block are
placed in the right section of the array. Since no data
lines in the 'river" can cross each other data that is
transferred between the data-path, sequencer or flags block
must pass through the array even though no function is
performed on the data in the array. |

The Weinberger array consists of a regular structure of
NOR gates having arbitrary numbers of inputs. The pull-up
transistors of the NOR gates are connected to Vdd at the
bottom of the array and run vertically the full height of
the array. Vertical ground wires run parallel to the pull-up
transistor lines from the ground bus at the top of the
array. Inputs to the NOR gates run horizontally through the
array and form pull-down transistors when connected to ground
and the NOR gate output line. The NOR gate output lines also

run horizontally through the array and may be used as input

lines to other NOR gates or routed to a flag or signal output

pad. As more NOR gates are added to the Weinberger array or

'\-.
ki, more inputs or outputs are added to each gate the array
increases in width. The height of the array is determined

=S by the number of horizontal interconnections between the NOR

LA

gates [Ref. 7].
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L Eight different boolean functions are implemented in the

i

v

Weinberger array, all with NOR gates: NOR, AND, NAND, OR,

—YTD x
LA N

4

EQU, XOR, parity and NOT [Ref. 2]. Figure 2.10 shows how an
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NOR Gate Implementation of the XOR Function

IN 1
IN 2
Figure 2.10.
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XOR function is implemented using NOR gates. The stick
diagram of Figure 2.11 shows the Weinberger array implemen-
tation of the XOR function from Figure 2.10 and Figure 2.12
shows an actual Weinberger array layout of this function.
The PLA and Weinberger array structures are very
similar but there are several important differences. First,
the PLA has only two levels of logic, the AND and the OR
planes. The Weinberger array can have an arbitrary NOR gate
depth. Although a PLA can implement the same functions
performed in the Weinberger array the MacPitts designers
found that when a boolean function was normalized in the
sum-of-products form the Weinberger array's NOR gate depth
allowed a much more compact structure than the PLA's
(Ref. 3]. Another difference is that the complement of each
input signal does not have to be available at the input of
the Weinberger array as a PLA requires. The complements of
array inputs are generated in the array if they are required.
It has been found that the generation of the Weinberger
array usually takes from 80% - 95% of the computer's
compilation time in generating a MacPitts design. When an
8-bit 5-stage pipeline adder was designed using the
MacPitts compiler 162 CPU minutes (about eight hours on a
lightly loaded computer system) were required to complete this
design. Most of this time was required to lay out the 228

vertical control columns (the number of array inputs and
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Figure 2.11. Stick Diagram of the Weinberger Array
Implementation of an XOR Function
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outputs plus the number of nor gates in the array) and the

81 horizontal control tracks (the number of nor gate inputs
and outputs in the array). When a 16-bit 5-stage pipeline
adder design was attempted which contained 435 control
columns and 157 control tracks the design process was killed
after 4800 CPU minutes (four days) were spent designing the
Weinberger array. When the size of the Weinberger array of a
4-bit S5-stage pipeline adder (126 columsn and 43 tracks) is
compared with the size of the 8-bit and 16-bit adders it

can be seen that the Weinberger array becomes nearly four
times larger and more complex in this 5-stage pipeline design

when the size of the data word is doubled.
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I1II. THE DESIGN OF ADDER CIRCUITS

A. COMBINATIONAL ADDERS

The design of combinational adder circuits with the
MacPitts compiler is more straightforward than the design of
pipeline adder circuits. The output sum of a combinational
adder depends only on the present inputs to the circuit.
Unfortunately, several compiler design constraints cause the
combinational adder design to be more complicated than
necessary.

The compiler adds two input vectors (ain and bin) in
the data-path using the ripple carry full adder circuit
shown in Figure 2.5. The first problem occurs when trying to
add the input carry (cin) to the first bit of ain and bin.
Since cin is a one-bit sized dats element and the data-path
can only manipulate word size data elements cin must be
converted to a word sized data element. This requires
additional circuitry in the data-path and the Weinberger
array and also additional statements in the MacPitts .mac
program.

A second problem occurs because the MacPitts language
in which the .mac program is written allows only two
variables in the addition function [Ref. 2]. All MacPitts
functions are limited to one or two variables. It is assumed

that the number of variables in a MacPitts function was

36
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limited by the compiler designers to simplify the design of

the compiler. The simple LISP addition function of

(+ ain bin cin)

is accomplished in MacPitts with the more complicated

function

(+ ain (+ bin cin)).

This embedded addition causes two full adder circuits to be

connected in cascade. In the first full adder bin is added

to cin and this sum is added to ain in the second full adder.
A third problem is that the carry in and carry out

lines of the full adder cannot be addressed by the

programmer. They are only used to ripple the carry bits

PO ) SCLP I 2004 Yod Bwe ¥ 5.+ S L T Wy, WA,

between full adder stages. The carry in of the bit 0 full

adder is connected to ground; the carry out of the last

full adder stage is not connected to anything. If a chip
carry out is desired it must be generated by additional
circuitry in the Weinberger array.

Figure 3.1 shows a block diagram of the data-path for a

two bit combinational adder circuit with carry in. In
Figure 3.2 the .mac program for a 4-bit combinational adder
is shown. Lines 14 and 15 convert the carry in signal to a

word size data element. The least significant bit of the

carry in word is set to 1 or O depending on the value of the )\
carry in signal. All other bits of the carry in word are ?

37
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1 ;adder 4-bit combinational
2 {program add 4
3 (def 1 ground)

4 (def ain port input (2 3 4 5)) ;input vector
5 (def bin port input (6 7 8 9)) ;input vector
6 (del res port output (10 11 12 13)) ;output vector
7 (def cin signal input 14) carry in

8 (def carry port internal)
9 (def 13 phia)

10 (def 16 phib)

11 (def 17 phic)

12 (def 18 power)

13 {always
14 (cond (cin (setq carry 1))
15 {t (setq carry 0)))

16 (setq res (+ ain {+ bin carry)})})

.y

<
-
-
te
oY
-
<

Figure 3.2. 4-Bit Combinational Adder .mac Program
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94 (setq ¢5 (or (bit 5 g3) (and (bit 4 g3) (bit 5 p3))
95 {and bc3 (bit 4 p3) (bit 5 p3})))

96 (setq ¢6 (or (bit 6 ¢3) {and (bit & g3} (bit 6 p3}))
97 (and (bit 4 g3) (Lit 3 p3) (bit 6 p3))

98 (and be3 (bit 4 p3) (bit 3 p3) (bit 6 p3))))
99 (setq c7 bc7)

100 (setq pd4 p3)

101 (setq carryd carry3))

102 ;

103 ;Stage Five

104 .

105 (par (setq addO (xor (bit 0 pd) carry4))

106 (setq add1 {xor {bit 1 p4) c0))

107 (setq add2 {xor (bit 2 p4) c1})

108 {setq add3 (xor (bit 3 p4) ¢2})

109 (setq add4 {xor (bit 4 p4) ¢3})

110 (setq add5 (xor (bit 5 p4) c4))

1m (setq add6 (xor (bit 8 p4) ¢5})

112 (setq add7 {xor (bit 7 p4) ¢6))

113 (setg carryout ¢7)

114 (setq sumb add0)

115 (setq suml add1)

116 (setq sum? add?2)

117 (setq sum3 add3)

118 (setq sum4 add4)

119 (setq sum5 add5)

120 {setq sum6é add6)

121 (setq sum7 add7)

122 (setq cout carryout))))

ool Bkt il

Stz Dt et et

Figure 3.8. MacPitts .mac Program for a 8-Bit 5-Stage
Pipeline Adder Circuit (cont.)
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48 (def add?2 flag)

49 (def add3 flag)
50  (def add4 Nag)
51 (def add5 flag)
52 (def add6 flag)

53 (def add7 flag)

54 {always

55,

56 .Stage One

57,

58 (par [setq pl {word-xor ain bin})

59 (setq gl {word-and ain bin))

60 {cond {cin (setq carryl t))

61 (t (setq carryl f})))

62 ;

63 ;Stage Two

64 ;

65 (par (setq bpO {and (bit 3 p1) (bit 2 p1) (bit 1 p1) (bit 0 p1}))) .
66 (setq bpl (and (bit 7 p1) (bit 6 p1) {bit 5 p1) (bit 4 p1)))
67 (setq bgO (or (bit 3 g1) (and (bit 2 g1} (bit 3 p1))
68 (and (bit 1 g1} {bit 2 p1) (bit 3 p1))

69 (and {bit O g1} (bit 1 p1} (biv 2 p1) (bit 3 p1)}})
70 (setq bgt {or (bit 7 g1) (and (bit 8 g1} {bit 7 p1))
71 {and (bit 5 g1) (bit 6 p1) {bit 7 p1))

72 (and (bit 4 g1) (bit 5 p1}) (bit 8 p1) (bit 7 p1)}))
73 (setq p2 pl)

74 (serq g2 g!)

75 (setq carry2 carryl))

76 ;

77 ;Stage Three

78 ;

79  (par {setq be3 (or bg0O (and carry2 bpO}))

80 (setq be7 {or bgl (and bgQ bpl) (and carry2 bp0 bpl)))
81 (setq p3 p2)

82 (setq g3 g2)

83 {seiq carry3 carry2))

84 ;

85 ,Stage Four

86 ;

87 (par (setq ¢O (or (bit 0 g3) (and carry3 (bit 0 p3}}))

Y] {setq cl {or (bit 1 g3} {and (bit 0 g3) (bit 1 p3))
89 {and carry3 (bit 0 p3) (bit 1 p3})))

90 {setq 2 (or {bit 2 g3) (and (bit 1 g3) {bit 2 p3})

91 (and carry3 (bit 0 p3) (bit 1 p3) (bit 2 p3}}))
92 (setq ¢3 be3)

93 (setq ¢4 {or (bit 4 g3) (and bed (bit 4 g3))})

Figure 3.8. MacPitts .mac Program for a 8-Bit 5-Stage
Pipeline Adder Circuit (cont.)
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1 (program addp 8

2 ;This adder uses block carry lookahead (BCLA} addition

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
i8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
11
42
43
44
45
46
47

Figure 3.8.

(def 1 ground)

(def ain port input (23456 7 8 9)) ;input vector
{(def bin port input (10 11 12 13 14 15 16 17)) ;input vector

(def cin signal input 18}

(def sum7 signal output 19}
{def sumé signal output 20)
{def sum$ signal output 21)
(def sum4 signal output 22)
(def sum3 signal outpur 23}
{def sun2 signal vutput 24)
{def sum1 signal output 25)
(def sumO signal output 26)
(def cout signal output 27}

o fhanc b S MRl

e h S A A A S A RARRA B R AT

e W e Wt w = «.-}

;carry into chip
:bit 7 sum

:bit 6 sum

;bit 5 sum

;bit 4 sum

:bit 3 sum

;bit 2 sum

;bit 1 sum

;bit 0 sum

;earry out of chip

(def 28 phia)
(def 29 phib)
{def 30 phic)
(def 31 power)
(def pl register)
(def p2 register)
(def p3 register)
{def p4 register)
(def g1 register)
(def g2 register)
{def g3 register)
(def bpO flag)
{def bp1 flag)
(def bg0 flag)
{def bgl fag)
(def be3 flag)
(def be? flag)
(def carryl flag)
(def carry2 fiag)
(def carry3 flag)
(def carryd flag)
(def ¢O flag)
{def c1 flag)
(def c2 flag)
(def ¢3 flag)
(def c4 fag)
(def ¢5 fag)
(def ¢6 Mag)
{def ¢T Mag)

(del carryout flag)

(def add0 Mag)
(def add1 flag)

iclock phases

jcarry propagate-stage one

3 -stage two

; -stage three

; -stage four

;carry generate-stage one

; -stage two
-stage three

block carry propagate

;block carry generate

;block carry

;cin-stage one
; -stage two
-stage three
-stage four
;bit O carry
;bit 1 carry
;bit 2 carry
;bit 3 carry
;bit 4 carry
;bit 5 carry
;bit 6 carry
;bit 7 carry
cout flag
:bit sum flags

MacPitts .mac Program for a &-B1t o-Stage

Pipeline Adder Circuit
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8-bit adder is shown in Figure 3.8 and the circuit layout is
shown in Figure 3.9. The block diagram of the 8-bit adder
would be the same as the block diagram of the 4-bit adder
shown in Figure 3.7. The size of the 8-bit adder circuit is
6.650mm x 4.358mm. The data-path is twice as tall, the flags
block is almost twice as long and the area of the Weinberger
array is four times larger in the 8-bit adder than in the
4-bit adder.

An attempt was made to design a 16-bit S5-stage pipeline
adder with the MacPitts compiler. The compiler was able to
design all but the large Weinberger array which is four
times larger than the 8-bit adder array. The program that
designs the Weinberger array uses a recursive algorithm and
the depth of recursion is limited by the amount of memory
available to the LISP compiler. Since the array of the
16-bit adder circuit is so large the limit of the depth of
recursion was reached,

The 16-bit pipeline adder contains four carry-look-ahead
blocks. When the .mac program of the 16-bit adder (Figure
3.10) is compared to the .mac programs of the 8-bit and
4-bit adders (Figures 3.6 and 3.9) the programs are
essentially the same except for additional statements in
stages 2 through 5 due to the larger 16-bit data word and

due to the additional carry-look-ahead blocks.
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shown in lines 43 and 44, are performed with the word-xor 3
and the word-and functions in the data-path. All functions ’ l

in stages 2 thru 5 require the manipulation of bit size data

Aoa oo . o

elements. These functions are performed in a large

Weinberger array. Registers and flags are used to store the

input and output data of each stage. It takes less circuitry

(and fewer statements in the .mac program) to manipulate

word size data elements and store them in registers than to

"3

manipulate bit size data elements and store them in flags.

S

Since there is no MacPitts function to set the bits of a ]
word to a particular value the bit sized output data

elements of stages 2 through 4 cannot be combined into words ]

and stored in registers. The output data of stages 2 through
4 must be stored in flags and this requires a very large ]
flags block. ]

A pipeline circuit designed by the MacPitts compiler ) ,
does not perform like a standard pipeline circuit as j
described in [Ref. 9] because the input data of each stage

is valid before the start of the clock period. When data is

L
<
stored in a MacPitts register or flag the data is valid on ?
the register or flag output line before the end of the clock ]
period (see Figures 2.2, 2.7, and 2.8). The data then starts 3
P

to propagate through the combinational logic of the next ) 7
stage before the start of the next clock period. During the 1
next clock period the data will continue to propagate

through the stage combinational logic during the first two

48




43
44
45
v 46
-~ 47 ;
< 48

. 49 ;

- 50

- 51 (setq bgO (or (bit 8 g1) (and (bit 2 g1} (bit 3 p1))
by 52 {and (bit 1 g1} (bit 2 p1) (bit 3 p1))
< 53 (and (bit 0 g1} (bit 1 p1) (bit 2 p1) (bit 3 p1})))
54 {setq p2 pl) )
. 55 (setq g2 gl) !
‘ 56 (setq carry2 carryl}) '
57 ; 4
g 58 ;Stage Three 1
N 59 ;
60  (par (setq be3 (or bg0 (and carry2 bp0)))
i 61 (setq p3 p2)
< 62 (setq g3 g2)
- 63 (setq carry3 carry2))
- 64 ;
. 85 ;Stage Four }
66 ; 1
67  (par (setq cO {or (bit D g3) (and carry3 (bit 0 p3))))
X 68 {setq c1 (or (bit 1 g3) (and (bit 0 g8) (bit 1 p3)) i
69 (and carry3 (bit 0 p3) (bit 1 p8)})) j
70 (setq c2 (or (bit 2 g3) (and (bit 1 g8) (bit 2 p3))
. 71 (and carry3 (bit 0 p3) (bit 1 p3) (bit 2 p3)}))
- 72 (setq p4 p3) [
’ 73 (setq ¢3 be3)
e 74 (setq carry4 carry3))
. 75 ;
N 76 ;Stage Five
N 17,
. 78  (par (setq add0 (xor (bit O p4) carry4))
[} 79 (setq add1 (xor (bit 1 p4) c0})
- 80 (setq add?2 (xor {bit 2 p4) 1))
- 81 (setq add3 (xor (bit 3 p4) c2)) )
82 (setq carryout ¢3) /
f:: 83 (setq sum0 add0) ;
84 (setq sum1 add1) i
!- 85 {setq sum?2 add2)
_~‘ 86 (setq sum3 add3)
’ 87 {setq cout carryout))})
. Figure 3.5. MacPitts .mac Program for a 4-Bit 5-Stage
' Pipeline Adder Circuit (cont.)
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(par (setq p1 {word-xor ain bin))
(setq gl (word-and ain bin))
(cond (cin (setq carryl t})

(t (setq carryl f))})

;Stage Two

1

(par (setq bpO (and (bit 3 p1) (bit 2 p1) (bit 1 p1) (bit 0 p1)})

PN DR PR PPN B Ui S VI AT NS N PR g -
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1 {program addp 4
2 ,This adder uses bloch carry luvhahead {BCLA} addition

3

oo =3 O O

9

10

11

12

13

14

15

16
17

18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

]
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Figure 3.5,

(def 1 ground)

.'-"~'.‘-'*.'---'-'."_‘-.'.'J‘-"-'-'

(def ain port input (2 8 4 5}) ;input vector
{(def bin port input (6 7 8 9)) ;input vector

(def cin signal input 10)
(def sum3 signal output 11)
{(def sum2 signal output 12}
{def sum1 signal output 13)
(def sumO signal output 34}
(def cout signal output 15)
(def 16 phia)

(def 17 phib)

(def 18 phic)

(def 19 power)

(def p1 register)

(def p2 register)

(def p3 register)

(def p4 register)

(def g1 register)

(def g2 register)

(def g3 register)

(def bpO flag)

(def bgO flag)

(def be3 flag)

{def carry1 flag)

(def carry2 flag)

(def carry3 flag)

(def carry4 flag)

(def ¢O flag)

{(def c1 flag)

(def c2 flag)

(def <8 Nag)

(def carryout flag)

(def addO flag)

(def add! flag)

(def add2 flag)

(defl add?2 flag)

(always

Stage One

’

MacPitts .mac Program for a 4-Bit

;carry into chip
;bit 3 sum

:bit 2 sum

;bit 1 sum

;bit 0 sum

;carry out of chip
;clock phases

;carry propagate-stage one
; -stage two

; -stage three
; -stage four
;CarTy generate-stage one
; -stage two

; -stage three
;block carry propagate
;block carry generate
;block carry

;cin-stage one

; -stage two

; -stage three

; -stage four

;bit 0 carry

;bit 1 carry

;bit 2 carry

;bit 3 carry

;cout flag

;bit sum flags

Pipeline Adder Circuit

16
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€2,6,10,147%2,6,10,147%1,5,9,13%2,6,10,14
*Co,4,8,12"1,5,9,1372,6,10,14
ii *BC_,,3,7,11%0,4,8,12F1,5,9,13%2,6,10,14
o

(Note that C0,4,8,12 means Ci for i=0,4,8,12.)

o 5. Calculate the sum bits (Si)'

Si = (Ai)XOR(Bi)XOR(Ci—l)

The Conradi and Hauenstein [Ref. 5] pipeline adder had

s SRR

only four stages. Stages 1 and 2 were combined by writing

the equations describing the BGj's and BPj's in terms of the
input operands instead of in terms of the Gi's and Pi's. The
MacPitts pipeline adders contain five stages because the
increased stage propagation delay caused by combining stages
1 and 2 could slow the clock speed of the circuit and the
fastest possible clock speed is desired.

Figure 3.5 shows the .mac program for a 4-bit S5-stage
pipeline adder circuit. The carry in of the chip is used in
all stages of the pipeline so a separate storage location is

required for each stage as shown in lines 26 thru 29. The

carry propagate and carry generate calculated in stage 1 are
used in stages 4 and 5, respectively, so multiple storage
locations are also used for these quantities. The

calculations of the carry generate and carry propagate,

45
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Calculate one block generate (BGj) and block propagate

(BPJ) for every four bits of the addition operands

from the Gi's and Pi's

BP;y = PiugPisp*isrPy 3 350,1,2,3,... 5 i=4]

BG. = G., ,+G +P +G.P P P H

J i+3 Ti+2 i+3+Gi+1Pi+2pi+3 iTi+1 i+27i+3

j=0,1,2,3,... ; i=4j

Calculate the block carry (BCl) for each carry block.

BC3 = BG0+C_1BP0

BC7 = BG1+BG0BP1+C_1BP0BP1

BC11 = BG2+BGIBP2+BGOBP1BP2+C_lBPOBplBP2

BC15 = BG3+BGZBP3+BGIBPZBP3+BGOBP1BP2BP3+C_lBPOBplBPZBP3

Calculate the look-ahead-carry (Ci) for each bit of the

operands.

=G +BC

0,4,8,12°90,4,8,12*2%_1,3,7,11%0,4,8,12

=Gy,5,9,13%%,4,8,1271,5,9,13

+BC

€1,5,9,13

-1,3,7,11%0,4,8,12%1,5,9,13
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combinational logic of the combinational circuit the
pipeline circuit has a shorter logic propagation delay
during each clock period. This allows the pipeline circuit
to operate at a faster clock speed and higher data output
rate (throughput) than the combinational circuit. A
disadvantage of a pipeline circuit is the latency caused by
the time that is required to fill and empty the pipeline.
Reference 9 should be consulted for more information on
pipelining.

There are many different algorithms that can be used to
design a pipeline adder circuit. The block carry-look-ahead
(BLCA) addition algorithm [Ref. 10] was used so that a
comparison could be made between a MacPitts designed
pipeline adder circuit and the hand-crafted pipeline adder
circuit designed by Conradi and Hauenstein [Ref. 5].
Equations 6.1 thru 6.12 of [Ref. 5] are used to implement
the BCLA addition algorithm. As described in [Ref. 5], the
BLCA pipeline adder can be conveniently divided into the
following five stages:

1. Calculate the carry generate (Gi) and the carry

propagate (Pi) from the input addition operands.

G A.B

i ii

go]
0\

(Ai)XOR(Bi)
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.

set to O regardless of the value of the carry in signal.

This can be seen on the left side of Figure 3.1. Figure 3.3
and 3.4 show the 4 micron MacPitts designs for a 4-bit and an
8-bit combinational adder. The size of the 4-bit adder is
2.292mm x 2.398mm and the size of the 8-bit adder is 3.508mm
x 3.614mm. As shown, the size of the chip frame is larger
than required by the circuitry inside the chip. A larger
frame is needed because pads can be placed only on three
sides of the frame. The frame could be smaller and the chip
area could be more effectively used if pads were placed on
all four sides of the frame. Both of these MacPitts designs
produced correct simulations when simulated by the event
driven switch level simulator, esim, using the procedure

outlined in [Ref. 4].

B. PIPELINE ADDERS

The purpose of pipelining a circuit is to increase the
throughput of the circuit. The combinational logic of a
circuit is partitioned into several smaller functional units
or stages and storage registers are placed between each
stage. During each clock period data is clocked from the
input storage register of each stage through the
combinational logic of the stage and into the output storage
register of the stage. Also, during each clock period a
result exits the pipeline. Since the combinational logic in

each stage of the pipeline circuit is less than the total
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1 {program addp 16

2 :This adder uses block carry lookahead (BCLA) addition

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

(defl 1 ground)
(def ain port input (23456

7891011121314 15 16 17))

(def bin port input (18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33))

{(def cin signal input 34}
(def sum15 signal output 35)
{def sum14 signal cutput 36)
(def sum13 signal output 37)
(def sum12 signal output 38)
{def sum11 signal output 39)
(def sum10 signal cutput 40)
{def sum9 signal output 41}
{def sum8 signal output 42)
(def sum7 signal output 43)
(def sum6 signal output 44)
{def sumb5 signal output 45)
{def sumd signal ontput 46)
(def sum3 signal output 47)
(def sum2 signal output 48)
(def sum1 signal output 49)
(def sumO signal output 50)
{def cout signal output 51)
(def 52 phia)

(def 53 phib)

{def 54 phic)

(def 55 power)

(def pl register)

{(def p2 register)

(def p3 register)

{def p4 register)

(def gt register)

{def g2 register)

(def g3 register)

{(def bp0 flag)

(def bp1 flag)

(def bp2 flag)

{def bp3 Mag)

{def bgh MNag)

(def bgl flag)

Figure 3.10. MacPitts
5-Stage Pipeline Adder Circuit

.mac Program for a 16-Bit

57
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41 (def bg?2 flag)
42 (def bg3 MNag)

3 (def be3 flag)
41 (def LeT fag)
145 (def belt flag)
16 (def beld flag)
47 (def carry] flag)
48 (def carry? flag)
19 (def carry3 Nag)
50 (def carry4 flag)

51 (def cO flag)
52 (def c1 flag)
53 (def c2 flag)
54 (def ¢3 flag)
55 (def c1 flag)
56 (def ¢5 flag)
57 (def cB flag)
58 (def ¢7 flag)
59 (def 8 fag)

60 (def c9 flag)
61 (def c10 flag)
62 (def c11 flag)
63 (def c12 Mag)
64 (def c13 flag) -
65 (del c14 MNag)
66 (def c15 flag)
67 (def carryout flag)
68 (def addO flag)
69 (def add1l flag)
70 (def add? flag)
71 (def add3 flag)
72 (def add4 flag)
73 (def add5 flag)
74 (def addé flag)
75 (def add7 flag)
76 (def add8 flag)
7 (def add9 flag)
78 ({defl add10 flag)
79 (def add11 flag)
80 (def add12 flag)

‘el

Figure 3.10. MacPitts .mac Program for a 16-Bit .
5-Stage Pipeline Adder Circuit (cont.)

58
{
-
.
- - LI et e A e \-.‘,'.-.".-_-'.‘-'.-.‘ BRI _--._..“..\.‘.‘. _.."..'
. .- - T e T e o % e T - ot ~ e .. . - . o - . RS IR S . RO el - - . s . .
b -t R R N I AT S PO S A R T S N SR S P T U T S, e e e e e e e e e e e e e ] N
RN R TR R AP AP T I I N T R e R S A O A S A .
N N e e S e S e o -




Y P T TP OOR CHL W DR R T T T YT

P N VR TR TR TR badinidind

i

81 (def add I3 flag)
82 (def addi4 flag)
83 (defl add15 flag)
84 [always

L R A 7 T - . - . -
RAS WOthady  aranngy  DEEEREe

83 :
86 ;Stage One
7.
8&  (par (setq pl {word-xor ain bin))
89 (setq gl (word-and ain bin}}
90 (cond {cin (setq carryl 1))
91 (¢ {setg carryl f})))
92

- 93 Stage Two

o 94 ;

S 95  (par (setq bp0 (and (bit 3 p1} (bit 2 p1) (bit 1 pl) (bit 0 p1)})
96 (setq bpl {and (bit 7 p1) {bit 6 p1) (bit 5 p1) (bit 4 p1)))
97 {setq bp2 (and (bit 11 p1) (bit 10 p1) (bit 9 p1) (bit 8 p1}))
98 {setq bp3 (and (bit 15 p1) (bit 14 p1) (bit 18 p1)
99 {bi 12 p1}})
100 {setq bg0 (or (bit 3 g1) (and (bit 2 g1) (bit 3 p1))
101 (and (bit 1 g1) (bit 2 p1) (bit 8 p1))
102 (and (bit 0 g1} (bit 1 p1) (bit 2 pl) (bit 8 p1))))
163 (setq bgl (or (bit 7 g1) (and (bit 8 gl) (bit 7 p1))
104 {and {bit 5 g1) (bit 6 p1) (bit 7 p1))
105 (and (bit 4 gt} (bit 5 p1} (bit 6 p1) (bit 7 p1))))
106 (setq bg2 (or (bit 11 g1) (and (bit 10 g1) (bic 11 p1))
107 (and (bit 9 g1} (bit 10 p1) (bit 11 p1)) ,
108 (and (bit 8 g1) (bit 9 p1) (bit 10 p1) (bit 11 p1)))) "
109 {setq bg3 {or {bit 15 g1) (and (bit 14 g1) (bit 15 p1)) ‘1
110 (and (bit 13 g1) (bit 14 p1) (bit 15 p1)) ;
4] (and (bit 12 gI) (bit 13 p1) (bit 14 p1) (bit 15 ph)})) K
112 (setg p2 pi) u
113 (setq g2 g1) u
114 {setq carry2 carryl)) .
s -
116 .Stage Three -
117 ; .
118 (par {setq be3 (or bg0 (and carry2 bp0))) .
119 [setq be? [or bgl {and bg0 bpl) (and carry2 bp0 bp1))) :
120 (setq beit (or bg2 (and bgl hp2) (and bg0 bpl Lp2) !

Figure 3.10., MacPitts .mac Program for a 16-Bit
5-Stage Pipeline Adder Circuit (cont.)
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121 {and carry2 bp0 bpl bp2))y
122 {setq beld (or bg3 (and bg? bp3) (and bg! bp? bp3)
- 123 (and bg0 bpl bp2 bp3) (and carry2 bpu bpl bp2 bp3)))
i 124 (setq p3 p2)
- 123 (setq g3 g2)
“: 126 (setqy carry 3 carry2))
- 127 .

12% Siage Four

o 129
' 130 (par (setq cO (or (bit 0 g3) (and carry3 (bit 0 p3))))
:.‘:: 131 (setq c1 (or (bit 1 g3) (and (bit 0 g3} (bit 1 p3))
e 132 (and carry3 (bit 0 1.3) (bit 1 p3))))
o 133 (setq ¢2 {or (bit 2 g3) (and {bit 1 g3) {bit 2 p3))
- 134 (and carry3 (bit 0 p3) (bit 1 p3) (bit 2 p3))))
i 135 (setq <3 be3)
136 (setq cd4 (or (bit 4 g3) (and be3 (bit 4 g3))))
137 (setq ¢3 (or (bit 5 g3) (and (bit 4 g3) (bit 5 p3))
138 {and bed (bie 4 p3) (bit 5 p3))))
139 (setq ¢6 (or (bit 6 g3) (and (bit 5 g3) (bit 6 p3))
140 {and (bit 4 g3) (bit 5 p3) (bit 6 p3))
141 (and be3 (bit 4 p3) (bit 5 p3) (bit 6 p3))))
142 (setq ¢7 be7)
143 (setq c# {or (bit 8 g3) (and be7 (bit 8 p3))))
144 (setq €9 (or (bit 9 g3) (and (bit 8 g3) (bit 9 p3))
145 {and be7 (bit & p3) (bit 9 p3})}) ;
146 (setq c10 {or (bit 10 g3) {and (bit 9 g3) (bit 10 p3)) ]
147 (and (bit 8 g3) (bit 9 p3) {bit 10 p3)) R
148 (and be7 (bit 8 p3) (bit 9 p3) (bit 10 p3))))
149 (setg c11 bell)
150 (setq ¢12 (or (bit 12 g3) (and bell (bit 12 p3))))
151 {setq c13 (or (bit 13 g3) (and (bit 12 g3) (bit 13 p3))
152 {and bell (bit 12 p3) (bit 13 p3))))
153 (setq c14 (or (bit 14 g3) (and (bit 18 g3) (bit 14 p3))
154 (and (bit 12 g3) (bit 13 p3) (bit 14 p3)) ‘
155 (and bell (bit 12 p3) (bit 18 p3) (bit 14 p3)))) !
156 (setq c15 bc15) .
157 (setq p4 p3) '
158 (setq carry4 carry3)) ;
L J i
- Figure 3.10. MacPitts .mac Program for a 16-Bit
g. 5-Stage Pipeline Adder Circuit (cont.)
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159 .

160 Stage Five

161 .

162  (par (setq add0 (xor (bit 0 p4) carry4))
163 (setq add1 {xor (bit 1 p1) c0})
164 (setq add?2 {xor (bit 2 p1) 1)}
165 {setq add3 {xor (b1t 3 p1) ¢2))
166 (setq add4 {xor (bt 4 p1) c3))
167 {setq add5 {xor (bit 5 p4) c4))
16& {setq add6 (nor (bit 6 pd4) ¢5))
169 (setq add7 (xor (bit 7 pd) ¢c6))
170 (setq add¥ {vor {bit 8 pd4) 7))
171 (setq add9 (xor (bit 9 pd) c8))
172 (setq add10 (xor (bit 10 p4) ¢9})
172 (setq add11 {xor (bit 11 p4) c10))
174 (setq add12 (xor (bit 12 p4) c11))
175 (setq add13 {xor (bit 13 p4) c12))
176 {setq add14 (xor (bit 14 pd) c13))
177 (setq add15 (xor {bit 15 p4) c14))
178 {setq carryout ¢15)

179 (setq sumQ addo)

180 (setq sum] addl)

181 (setq sum?2 add?)

182 (setq sum3 add3)

183 (setq sum4 add4)

184 (setq sum5 add5)

185 (setq sum®6 addé6)

186 (setq sum7 add7)

187 (setq sum8 add8)

188 (setq sum9 add9)

189 {setq sum10 add10)

190 (setq sum11 add11)

191 (setq sum12 add1?2)

192 {setq sum13 add13)

193 (setq sum14 add14)

194 (setq sum15 add15)

195 (setq cout carryout))))

Figure 3.10., MacPitts .mac Program for a 18-Bit
5-Stage Pipeline Adder Circuit (cont.)
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Initially, simulations on the 4-bit and 8-bit pipeline
adder circuits could not be performed due to numerous wiring
and alignment errors in the MacPitts designs. These errors
are discussed in Chapter V of this thesis. After all of the
wiring and alignment errors were corrected the two adders

produced correct simulations using esim.
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IV. DESIGN PERFORMANCE COMPARISONS T

A. TIMING ANALYSIS USING CRYSTAL f
1. Introduction T

. g
. e

Crystal is a VLSI circuit delay analysis program
developed at the University of California at Berkeley. The

slowest paths in the circuit are determined by Crystal and

3 i) ORI

this information can be used to calculate the maximum clock
speed of the circuit. Version 2 of Crystal found in the

berk85 VLSI design tools available on the UNIX VAX computer

VRN o, ARSI

system was used for all timing and delay analysis.

Crystal reads circuit description information from a

.sim file created by the circuit extractor program Mextra
and then accepts commands from the programmer from the
terminal keyboard. There are seven categories of Crystal
commands and they must appear in the following order when a
timing analysis is performed: model commands, circuit
commands, dynamic node commands, check commands, setup commands,
delay commands and miscellaneous commands. References 6
and 11 should be consulted for a complete listing of all
Crystal commands and their use. Output from Crystal is
written on the terminal screen and can be stored in a file
if the UNIX "script" command is executed before the timing

analysis is started.
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2. Combinational Circuits

a. Performing a Delay Analysis

Combinational circuits are the easiest circuits
to analyzZe using Crystal. First, all input and output pads
should be labeled using the VLSI circuit editor Caesar. The
label can be any combination of distinctive ASCII characters
except space, tab, newline, double quote, comma, semi-colon
and parenthesis and must not start or end with a number.
Next a .sim file is created using Mextra with a -o option.
Only four commands: ''inputs", "outputs', ''delay' and
"critical" are necessary to analyze the circuit. The
commands "inputs'" and "outputs' are used to identify the
input and output signals of the combinational circuit.
Delay commands are used to tell Crystal when input signals

change value [Ref. 6]. The form of the delay command is:

delay (signal name) tr tf

where tr is the time that the signal will rise to 1 and tf
is the time that the signal will fall to 0. An example of a

delay command is:

delay ain 3 O

This delay command specifies that the time that ain will
rise is 3ns and the time that ain will fall is Ons. This
means that ain is initially set to O and will rise to 1 3ns

later. If a negative time is used in a delay statement a
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transition of that signal will not occur after time 0. This
allows the programmer to have input signals stable at the

start of the timing analysis. The command '"critical'" directs

o & a s s

Crystal to calculate the slowest path in the circuit.
Two other commands, ''check" and '"clear', may also

be useful. The check command performs a static electrical

PO W

check on the circuit. Information about nodes with no
transistors connected to them, nodes that are not driven, 9
/

nodes that don't drive anything, transistors that are

permanently forced off, transistors connecting Vdd and GND,
and transistors that are bidirectional is printed to the
screen [Ref. 11]). All of this information, except for the
information on the bidirectional transistors, is not very
useful in a Macpitts generated circuit. This is because
when the MacPitts silicon compiler does not use part of an
organelle in a chip design the unused circuitry is left in
the design resulting in improperly connected nodes and
transistors. A bidirectional transistor is a transistor for
which Crystal cannot determine the direction of signal flow
within the transistor. To prevent Crystal from calculating
circuit delays along impossible paths, bidirectional
transistors must be labeled to show signal directions. (See
paragraph 3.a. below for directions on how to label
bidirectional transistors.)

The command ''clear" is used to clear all previous

delay information and critical calculations from Crystal.
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-4

Information on inputs and outputs is not affected. When a

il NI

clear command is used new timing calculations can be made
based on new delay commands for the same circuit.
Figure 4.1 shows the sequence of commands used

to perform a timing analysis on a l-bit combinational adder

IR o) SRR

circuit. A check for bidirectional transistors was
previously performed and none were found in this circuit.

Line 2 shows the command used to invoke Crystal and lines 6

Cad ™ Lo

and 8 identify the circuit inputs and outputs. The Crystal
output lines that are enclosed in brackets on lines 5 and 7

indicate that Crystal has completed execution of the

previous commands. Crystal outputs a line in brackets after

P

the execution of every command. In lines 10, 16 and 19 the

two input bits, ain and bin, and the input carry bit, cin,
are set to 1, 0 and 1, respectively, with delay commands. In
lines 14, 17 and 20 Crystal indicates the number of stages
that had to be examined to determine the timeing delay for
each signal. After the delay commands, the critical command
is given in line 22. Lines 23 through 55 shows the time
delay through the critical path in the circuit. Each node
that is in the critical path is identified with the time

that it is driven. 1In this case the critical path started at
input pad bin, goes through the combinational logic in the
data-path and then ends at the output pad res 198.12ns later

(see Figure 4.2).
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Figure 4.1.

% script

1

2 % crystal addcl.sim
3 Crysal, v 2

4 : build addc).sim

5 0:00.7u 0:00.2s 30k,
6 : inputs ain bin cin

7 i0:00.u0u 0:00.0s 39k
8 : outpuls res

9 :0-00 Ou 0:00.0s 39k’
10 : delay ain 0 -1

11 Marking transistor flow...
12 Setting Vdd to 1...
13 Setting GND to 0...
14 (28 stages examined.)
15 {0:00.2u 0:00.1s 48k|
16 : delay bin-10

17 (41 stages examined.)
18 :0:00.1u 0:00.1s 54k|
19 : delay ¢in 0 -1

20 (26 stages examined.)
21 {0:00.0u 0:00.0s 54kl

22 : critical

23 Node res is driven high at 198.12ns

24 ...through fet at (885, 525) to Vdd after
25 342 s driven high at 189.31ns

26 ...through fet at (870, 457) to Vdd after
27 357 is driven low at 179.77ns

28 ...through fet at (849, 505) to GND after
29 139 is driven high at 171.36ns

30 ...through fet at (730, 387) to Vdd after
31 258 is driven low at 85.70ns

32 ...through fet at (668, 381) to 233

33 ...through fet at (668, 376) to GND after
34 221 is driven high at 81.04ns

35 ...through fet at {623, 385) to Vdd after
36 240 is driven low at 72.31ns

87 ...through fet at (561, 379) to 225

38 ...through fet at (561, 374) to GND after
89 171 isa driven high at 66.64ns

40 ...through fet at (454, 387) to Vdd after
41 255 is driven low at 48.79ns

42 ...through fet at (392, 381) to 231

43 ...through fet at (392, 376) to GND after
44 219 is driven high at 44.13ns

45 ...through fet at (347, 385) to Vdd after

46 237 1s driven low at 35.35ns
Crystal Delay Analysis of a 1-Bit
Combinational Adder
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47 ...through fet at (285, 379) to 223 'R
48 ...through fet at (281, 374) to GND after ) 'T
49 141 is driven high at 30.53ns o
50 ...through fet at (264, 381) to Vdd after )
51 119 is driven low at 13.17ns . o
52 ...through fet at {474, 603) to GND after -
53 401 is driven high at 8.66ns rq‘
54 ...through fet at (518. 593) to Vdd after

55  bin is driven low at 0.00ns
56 '0:00.1u 0:00 2s 54k

37 : clear

58 {0:00.0u 0:00.0s 51k’

59 : delay ain-10

60 Marking transistor flow...

61 Setting Vdd to 1...

62 Setting GND to 0...

63 {26 stages examined.)

64 |0:00.1u 0:00.1s 60k|

65 : delay bin 0 -1

66 (52 stages examined.)

67 [0:00.1u 0:00.1s 83k| -
68 : delay cin-10 ‘.3
69 (61 stages examined.)
70 {0:00.2u 0:00.0s 63k| -4
71 : critieal L
72 Node res is driven high at 226.63ns -
73 ...through fet at {885, 525) to Vdd after ::‘-
74 342 is driven high at 217.82ns R
75 ...through fet at (870, 457) to Vdd after 5
76 357 is driven low at 208.28ns ot
77 ...through fet at (849, 505) to GND after L

78 139 is driven high at 199.87ns i
79 ...through fet at (730, 387) to Vdd after 5
80 258 is driven low at 114.21ns KX
81 ...through fet at (668, 381) to 233 ::-
82 ...through fet at (668, 376) to GND after »—J
83 221 is driven high at 109.55ns L,
84 ...through fet at (623, 385) to Vdd after -

85 240 is driven low at 100.82ns -
86 ...through fet at (561, 379) to 225 :
87 ...through fet at (561, 374) to GND after

88 171 is driven high at 95.15ns

89 ...through fet at (454, 387) to Vdd after

90 255 1s driven low at 77.30ns

Figure 4.1. Crystal Delay Analysis of a 1-Bit
Combinational Adder (cont.)
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91
92
93
94
93
96
a7
a8
99
100
101
102
103
104
1056
106
107
108
109

Figure 4.1.

...through fet at {392, 381) to 231

...through fet at (392, 378) to GND after
219 is driven high at 72.64ns

...through fet at (347, 385) to Vdd after
237 is driven low at 83.86ns

...through fet at (285, 379) to 223

..through fet at (281, 374) 10 G\ after
141 is driven high at 59.04ns

...through fet at {264, 381) to Vdd after
170 is driven low at 42.03ns

...through fet at (188. 372) to GND after
63 is driven high at 28 83ns

Ahrough fet at {182, 189) to Vdd after
36 is driven low at 15.52ns

...through fet at (R85, 264} 1o GND after
148 1s driven high at 8 65ns

...through fet at (875, 408) to Vdd after
cin is driven low at 0.00ns

D quit
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When Crystal does a timing analysis of a

clocked circuit it is assumed that each clock phase (or

clock period segment in the case of a MacPitts design) is

Foll S Y e

long enough for the combinational logic in the circuit to

settle. But in a MacPitts circuit the first and second

Anabetodobeilia Lo

clock period segments, tl and t2, are used for the settling

time of the combinational logic. Crystal will give an -
overly long delay for tl of a MacPitts design because all of .
the logic propagation delay will be assigned to this section.
Another problem is that it will not be
possible to determine the logic delay of any stage in the

pipeline if the delay of the clock phase signals phia, phib

and phic getting to the registers or flags is longer than
the stage logic delays. This is because Crystal only gives
the timing delay for the critical or longest path in the Rk
circuit.

The problems are solved by dividing the

timing analysis of the Macpitts pipeline design into two

parts. First the clocked registers and flags of the chip
are analyzed for the timing delay of the input clock phase
signals and then the combinational logic in each pipeline
stage is analyzed to determine the slowest stage in the
pipeline system.

(2) Register and Flag Delays. The first step

in performing a timing analysis of the clocked registers and

flags is to edit the MacPitts circuit using Caesar. All
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placed on each transistor on the side of the gate that
shares the electrical connection to the other transistors.
Bidirectional transistors that are not electrically
connected should have different labels.

Figure 4.5 shows the stipple plot of a register
cell that has five bidirectional transistors labeled with
transistor attributes. The bidirectional transistor labeled
Cr:A$ is not electrically connected to any other bidirectional
transistor. The source side of the gate has been labeled.
The two transistors labeled Cr:B$ are the pull-up and pull-
down transistors of an inverter. Due to the unusual MacPitts
inverter structure Crystal could not determine the direction
of signal flow and identified the pull-up and pull-down
transistors as bidirectional. Since both of the transistors
are electrically connected the same transistor attribute
label has been placed on the side of the gates that are
connected. Transistors labeled Cr:C$ are the pull-up and
pull-down transistors of another inverter. Figure 4.6 shows
the transistor attribute labeling for the one bidirectional
transistor in a flag.

b. Crystal Commands fcr Clocked Circuits

(1) Problems Analyzing a MacPitts Design.

Crystal was designed to be used for a non-overlapping
clocking scheme. The overlapping clock phases and the five
segment period of the MacPitts clock (see Figure 2.2) make
the MacPitts pipeline adder circuit much more difficult to

analyze.
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Figure 4.4.
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Macpitts data storage elements, the register and the flag,

each have bidirectional transistors in them. The register
has five bidirectional transistors in each register cell and
the flag has one.

The procedure used to show the direction of
signal flow through a bidirectional transistor is to attach a
transistor attribute label to the transistor using Caesar. A

transistor attribute label has the following form:

Cr:(label)$

The label must be placed exactly in the middle of the source
or drain edge of the gate region of the transistor. This is
done by placing the center of the Caesar bounding box over
the center of the source or drain edge of the gate and

typing the following Caesar command:

: la Cr:(label)$ center

Figure 4.4 shows a stipple plot of a bidirectional
transistor. The center of the bounding box is on the center
of the source edge of the gate region and the transistor
attribute label Cr:A$ has been affixed to this point.

If a bidirectional transisotr is not electrically
connected to any other bidirectional transistor the transistor

attribute label should be placed on the source edge of the

gate. If two or more bidirectional transistors are )
electrically connected the same attribute label should be i
p
1
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COMPARISON OF MEAD-CONWAY AND
CRYSTAL DELAY CALCULATIONS

" of TOuRA

= Mead-Conway Crystal h

l logic delay Séns 93.79ns

wire delay

2ins 27ns

i pad delay

|
i
|
|
|
1
?Sns | 105.84ns
i
|
|
|
1
1
i

;; total delay 172ns 226.63ns ]
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up by 2.25. Multiplying the above wire delay by 2.25 gives
a total wire delay of 95ns.
(4) Pad Delays. The signal delay for the output

pad is approximately 13ns [Ref. 13]. Due to the lack of

Rig a g’ g aza -af¥ § % ° . °

available information on the signal delay for the input pad
the delay calculated by Crystal of 8ns will be used in this
comparison. This gives a total pad delay of 21ns.

(5) Comparison of Results. In Table II a

comparison is given of the circuit delays calculated using
the Mead-Conway methods and those calculated by Crystal.

The logic delays calculated using the Mead-Conway methods are
less than that calculated by Crystal because delays caused by
the polysilicon wires connecting the gates together in the
data-path are not taken into account in the Mead-Conway
calculations. The total circuit delay of 172ns calculated

by the Mead-Conway methods is in close agreement with the
226.63ns delay calculated by Crystal. It can be concluded
that the circuit delay information given by Crystal is
accurate and can be used with confidence.

3. Pipeline Circuits

a. Labeling Bidirectional Transistors
Before a timing analysis can be done on a MacPitts
design the bidirectional transistors in the circuit must be
identified by using the check command of Crystal and properly
labeled so that Crystal does not have to determine the

- direction of signal flow through these transistors. The

76




time, is 142t. Reference 12 states that the signal transit
time equals 0.3ns for a six micron design (lambda equals 3
microns) and the 1-bit combinational adder is a 4 micron
design (lambda equals 2 micron). The transit time is scaled
down by dividing by the scale factor 1.5 (6 microns divided
by 4 microns). This gives a transit time of 0.2ns. Using
this value, a logic delay of 28ns 1is obtained. This value
is doubled to account for stray capacitance in the circuit
giving a total logic delay of 56ns.

(3) Wire Delays. From Figure 4.2 it can be seen

that there are long metal and polysilicon runs in the circuit.
The total length of metal runs from the input pad to the
Weinberger array and from the data-path to the output pad is
approximately 3.9mm. The total length of polysilicon runs
e : from the input pad to the Weinberger array, from the Weinberger
array to the data-path and from the data-path to the output
pad is approximately 2.1lmm. There are no significant
diffusion runs in the circuit.

Reference 12, page 231, states that metal line
delays equal O0.1lns/10mm and that polysilicon line delays
» equal 200.0ns/10mm. Using these values a wire delay of 42ns
EZ is calculated. The wire delays used in the above calculations

9 are based on a 6 micron design. When lambda is scaled down

o the capacitance per unit length of wire stays constant but

the resistance scales up quadratically. Since lambda is

scaled down by a factor of 1.5 the wire resistance scales
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critical path is identified on the Caesar display screen

along with the timing delay information. Figure 4.3 shows

an example of how the timing delay information is displayed.
b. Validation of Crystal's Timing Data

(1) Introduction. Previous to this research

effort there had been no experience at the Naval Postgraduate
School in using Crystal to analyze circuits. The accuracy of

the results produced by Crystal was not known. In order to

gain confidence in Crystal a complete timing analysis of the :
1-bit combinational adder previously analyzed by Crystal was Q
|
performed using the Mead-Conway guidelines in [Ref. 12]. ;
The critical path found by Crystal was used g
to determine which transistors in the circuit were on. The ;
ol
delay calculations are divided into logic delays, wire a
delays and pad delays. ;
(2) Logic Delays. The following equations were é
used to calculate the logic delay in the circuit: a
Ry
Tpt = 2t o
'y
Tinv = fkt
Tnand = 2fkt

where Tpt is the delay for a pass transistor, Tinv is the
delay for an inverter, Tnand is the delay for a nand gate, t
is the signal transit time, f is the gate fanout, and k is
the pull-up to pull-down transistor ratio. Table I shows

that the total logic delay, in terms of the signal transit

72
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In line 57 the clear command is used so that a new
timing delay analysis on the same circuit can be made. In
lines 59, 65 and 68 new delay commands set ain, bin and cin
to 0, 1 and O respectively. The critical command is given on
line 71 and new critical path information is shown on lines
72 through 108. This time the critical path starts at the
input pad cin, goes through the Weinberger array and the
combinational logic in the data-path and ends at the output
pad res 226.63ns later. After finishing a Crystal timing
analysis the command ''quit" should be used to exit the Crystal
program.

As can be seen from the timing analysis of the
l-bit combinational adder, the longest critical path occurs
when cin is driven to a low state. This is because the cin
signal must travel through the Weinberger array and the first
organelle in the data-path. This circuitry is normally at a
high state unless brought low by a low cin. A high cin causes
no level transitions so there is no delay through the
circuitry. For a low cin there is a low transition that
takes approximately 30ns to propagate through the Weinberger
array and the first organelle in the data-path.

If the -g (filename) option is used with the
critical command [Ref. 11] the critical path timing information
is printed in (filename) in a format that can be accessed by

Caesar using the Caesar "source' command. Each node in the
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logic except the flags block, registers and the ground,
power and clock pads is deleted from the circuit. This is
done so that Crystal does not use the extraneous circuitry
in determining the critical path through the registers and
flags. Next, the registers are deleted from the circuit
because the clock phase signals will take longer to reach
the flags than the registers. This is because the registers
are closer to the clock pads on the clock bus and also the
clock phase signals are further delayed in the flag block
by two inverters. Finally, the input and output lines of
each flag are disconnected from the extraneous data lines
going to the Weinberger array, if not already done so, and
the input and output wires of each flag are labeled (see
Figure 4.7). Figure 4.8 shows what the edited circuit
looks like for 4-bit 5-stage pipeline adder.

The timing analysis of a clocked circuit
is similar to that of a combinational circuit except that
there is a separate set of delay and critical commands for
each clock phase. For the MacPitts overlapping clock there
is a separate set of delay and critical commands for each of
the five segments of the clock period. The clear command is
used hetween each set of delay and critical commands. Prior
to the delay commands, the clock phases that do not change
state during a section of the clock period should be set to
the high or low state using the set command [lef. 11]. Inputs

that are set to a state are not used by Crystal to determine
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the critical path because they do not have a state
transition. Also, if delay commands for inputs other than
the clock phases are not used Crystal assumes that the
input signals stabilize long before the start of the clock
period. Crystal then determines the longest critical

path in the circuit no matter what the state of the
non-delayed inputs are. In Figure 4.9 the Crystal commands
used to analyze the clock phase delays through the flags
block are listed.

(3) Pipeline Stage Delays. A separate Crystal

timing analysis must be performed on the combinational logic
in each pipeline stage in order to obtain propagation delays
for each stage. First, the input and output signals of each
stage must be determined. Input signals come from input pads
or from register or flag outputs. Output signals are inputs
to registers, flags or output pads. Next, using Caesar, the
input and output lines of each stage are disconnected from
any logic elements that are not part of that stage. This is
done so that Crystal does not use circuitry that is not part
of a stage in determining the critical path through that
stage. Labels are then placed on all input and output lines.
Figures 4.10 and 4.11 show two different
circuits before they are edited using the above procedure
and Figures 4.12 and 4.13 show the circuits after they have
been edited. In Figure 4.12 node cl is the output line of

stage 1 of the pipeline and has been disconnected from the
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script

crystal addpd4.sim
inputs in{16:1> phia phib phic
outputs outdlé:1>
set | phia phic
delay phib 0 -1
critical

clear

set 1 phia

delay phib -1 0O
delay phic -1 0
critical

clear

set 0 phib phic
delay phia -1 0
critical )
clear

set 0 phib phic
delay phia 0 -1
critical

clear

set 1 phia

set 0 phib

delay phic 0 -1
critical

qui t

o.uulll-hn.l.‘.-nnuuun.au...olluuull.\'.\.

Figure 4.9. Crystal Commands: Timing Delay of
Clock Phases
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Flag Cells After Editing

Figure 4.13.




input of the storage register cell. Node dl is the input 1line

of stage 2 and has been disconnected from the output of the
register cell. In Figure 4.13 nodes ol and pl are output lines
of stage 4 and have been disconnected from the input lines of
the storage flags. Nodes 02 and p2 are inputs of stage 5 and
have been disconnected from the output lines of the flags.
After all stages have been isolated and input
and output lines labeled a .cif file is created using Caesar
and then a .sim file is created using Mextra. A Crystal timing
analysis is then performed on each stage in the pipeline
using the same procedure as used when performing an analysis

on a combinational logic circuit.

B. DESIGN COMPARISONS

Three important parameters used when comparing the
performance of integrated circuit designs are chip size,
power and speed.

In order to determine the speed of a MacPitts pipeline
design the logic delay in each stage and the clock phase
delays must be compared. The propagation time of the slowest
stage in the pipeline is compared to the sum of the first
two segments of the clock period tl and t2. This is because
all logic propagation in the circuit must be settled before
t3 when the inputs to all storage registers and flags are
sampled. The slowest of these times is then added to t3, t4

and t5 to determine the clock period.
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Table III shows the propagation delay for each stage of

L
B

a 4-bit pipeline adder and an 8-bit pipeline adder (4 micron _

designs). The long delays in stages 2 through 5 of each :?
adder are caused by long delays through the Weinberger array E
and the long high-resistance polysilicon runs carrying data %1
from the registers to the array and carrying data back and .g
forth from the flags block to the array. The delays through g
the Weinberger array are due to three factors. First, the g
inputs to the array from the registers and flags are driven g
by k=4 inverters. These inverters, which are not super i
buffered, drive up to five nor gates in the array thus %
adding substantial delay to the stage [Ref. 12]. This delay i
could be considerably reduced if the outputs of all é
registers and flags were super buffered. Second, the g
propagation delay in the array is high due to the large Ei
number of nested NOR gates in the array. In some cases up to g
five NOR gates are nested to perform a particular function %
(i.e. an XOR function). This is much more delay than would §
be found in the two level nesting of a PLA. The excessive é
delays in the array are also caused by the long polysilicon -
lines that connect the inputs and outputs of the NOR gates. E
In some cases an output of a NOR gate is connected to the §
input of another NOR gate by a polysilicon wire that runs E
nearly the total width of the array. The increase in stage Ei
propagation delay of the 8-bit adder when compared to the ;
4-bit adder is due to the increased size of the Weinberger ;4

924
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TABLE III

PIPELINE STAGE DELAY

STAGE | 4-BIT PIPELINE ADDER | 8-BIT PIFPELINE ADDER
| |
I |
1 ! 33.9%9ns | 51.87ns
| | :
I i ;
2 | 126.14ns [ 255.53ns ]
| | -
| i }
3 I 104.60ns l 222.8%9ns E;
| |
l i "
q [ 142.70ns J 250.63ns .
| |
| |
S I 141.63ns | 203.87ns
| !

et e -'-.r-
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array of the 8-bit adder and not due to a poorly designed
pipeline chip.

In Table IV the delay in each clock period segment is
listed. The long delays are due to the inpuf clock pads not
being super buffered. One k=4 inverter on each clock pad
must drive eight k=4 inverters; one inverter for each of the
seven registers and one input inverter to the flags block.
Each of the input inverters of the registers and flag block
cause further delay because they are not super buffered but
must drive many register cells and flags. In the case of the
8-bit pipeline adder one k=4 inverter must drive twenty-
seven flags. Additional delay is caused by the long clock
bus. The clock signals must traverse a length nearly equal
to the height and width of the chip before reaching the
flags block. If the clock input pads, the input inverters,
all registers and the flags block were super buffered the
timing delay of each clock period segment would be
substantially improved.

Comparing Tables III and IV it can be seen that the
propagation delays through clock period segments tl1 and t2
are greater than the slowest stage for both the 4-bit and
8-bit pipeline adders. Thus, the clock period is found by
adding tl1 through t5. The clock period of the 4-bit 5-stage
pipeline adder is 486.74ns (2.055 MHz clock) and the clock
period of the 8-bit 5-stage pipeline adder is 706.32ns

(1.415 MHz clock).
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TABLE IV

CLLOCK SIGNAL DELAY

CLOCK PERIOD | 4-BIT PIPELINE I 8-BIT PIPELINE
SEGMENT | ADDER | ADDER
| {
| |
ti ] 1164.00ns | 170.46ns
| |
[ [
t2 | 86.é62ns | 102.46ns
| |
i |
t3 | 82.93ns | 106.96ns
| [
[ |
t4 1 100.87ns | 153.56ns
[ |
[ [
tsS | 120.0Sns I 172.68ns
] |

|
i
!
)
]
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Table V lists the chip size, power and speed of several
4 micron combinational and pipeline adder circuits designed
by MacPitts. In addition, a 16-bit 4-stage pipeline adder
that was designed by hand is also listed [Ref. 35]. (See
Figure 4.14.)

Chip size and worst case static power consumption are
standard outputs from the MacPitts silicon compiler. The
required power for the hand designed adder was found by
using a program called powest that makes an estimate of the
DC power required in a circuit based on the number of
enhancement and depletion mode transistors in the circuit.
Powest uses a .sim file as input and an output of the
average DC power (based on one-half of the transistors being
on at any time) and the maximum DC power (based on all
transistors being on) is printed on the terminal screen. The
value of power listed in Table V for the hand designed adder

is the maximum DC power. The command to run powest is:

powest -p ( filename.sim

For comparison, powest was run on all of the MacPitts
designs and the power estimates calculated by powest and
MacPitts were, on the average within 10% of each other.

A1l chip speed values listed in Table V were calculated
by Crystal. Reference 5 estimates the clock speed of the
16-bit 4-stage pipeline adder as 8 MHz. This is seven times

faster than the 1.141 MHz calculated by Crystal. The reason
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Figure 4.14. Hand Designed 16-Bit 4-Stage Pipeline
Adder
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for the discrepancy is that reference 5 does not take in
account that the clock pads in the circuit, which are not
super buffered, must drive a large number of pass transistors.
Clock pad phia drives 138 pass transistors that clock data
into the five PLAs in the circuit while clock pad phib drives
121 pass transistors that clock data out of the PLAs.

Another interesting observation about the hand designed
circuit from reference 5 is that when the circuit is examined
using Caesar a misalignment of one-half lambda between the
data, power and ground buses going into the PLAs and the PLA
blocks is found. As seen in Figure 4.15, the bus
misalignments are not enough to disconnect any wires.

As expected, when the combinational adder circuits were
converted to pipeline circuits the chip size and power
increased, but the increase in chip throughput (or speed)
anticipated in a pipeline design did not occur. The slow
circuitry of the Weinberger array, non-super buffered clock
pads and long polysilicon runs in the MacPitts pipeline
circuits caused excessive delays and decreased performance
below that of the combinational circuits. The excessive
delays could be reduced if the Weinberger array was redesigned

to reduce the NOR gate nesting or replaced by a PLA, if all

j input lines to the array were super buffered and if the long

polysilison runs were replaced with metal or diffusion runs.

T

D) 4R M ts!
2 A

If the design of a 16-bit pipeline adder were possible it is

expected that this design would have a clock speed less than
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and chip area much larger than the hand designed adder. Even
with fast logic in each pipeline stage and super buffered
clocks the fact that the last three segments of the MacPitts
clock period cannot be used for logic propagation insures
that the MacPitts pipeline designs will be slower than any

well designed hand-crafted circuit.
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V. MACPITTS DESIGN ERRORS

A. INTRODUCTION

Although the MacPitts silicon compiler is expected to
generate error free designs, several cases have been found
where design errors have been made. These design errors
fall into two categories: wiring errors and alignment
errors. Wiring errors have occurred when wires become
electrically connected when they should not be and alignment
errors have occurred when circuitry has been placed
incorrectly on the chip so that it does not align properly

with adjacent circuitry.

B. WIRING ERRORS

1. Description of Errors

A case of a fatal wiring error was discovered where
the MacPitts compiler electrically connected all three clock
lines that run in the clock bus below the data-path to a
data line that was running from the data-path to the
Weinberger array. This error was found to occur whenever the
last organelle of the data-path or sequencer is the
organelle used by the compiler to transfer data from the
data-path to the Weinberger array (see Figure 5.1). The
vertical polysilicon data wire of this organelle runs

parallel and only four lambda away from a large ground bus
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line that is always placed on the right edge of the
data-path and sequencer. The horizontal clock bus must make
metal-to-polysilicon polysilicon-to-metal vias over this
ground bus. Since the data wire runs so close to the ground
bus it crosses the clock bus at the metal-to-polysilicon via
and becomes electrically connected to the clock lines (see
Figure 5.2). This error was also found by Kelly (as
mentioned in [Ref. 4]) when he used MacPitts to produce a
butterfly switching element chip at MIT Lincoln Laboratory.
Unfortunately, this error cannot be identified when a design
rule check is made on the circuit because no design rules
are violated.

It is not difficult to predict when this wiring error
is going to occur in the data-path and to correct it when it
is found. A programmer should first examine the MacPitts
.mac program to identify all statements that cause word size
operations to be performed and cause the compiler to produce
an organelle in the data-path., If the last word size
statement in the .mac program uses the "bit'' data-path

function of the form:

(bit {bit-position) {integer-expression »)

the organelle that transfers data from the data-path to the
Weinberger array will be placed on the right edge of the
data-path and a fatal wiring error will occur. (See [Ref. 2]

for a description of the bit function.)
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It is more difficult to predict when this wiring
error is going to occur in the sequencer than in the data-
path. Reference 8 contains details of sequencer wiring
errors.

2. Correction of Wiring Errors

The wiring errors in the data-path and sequencer can
be easily corrected using the Caesar VLSI circuit editor.

Tho Caesar file that contains the last organelle of the
data-path or the sequencer must first be identified. This
file is then edited using Caesar and the right one or two
data lines are rerouted around the clock bus via as shown in
Figure 5.3.

If it has been determined that the "bit'" function is
the last work size statement in the .mac program the steps
used in the MacPitts design cycle of a 5 micron design that
are listed on page 68 of reference 4 should be modified as
follows:

1. Generate a 5 micron .cif file as stated. The following
command will create several Caesar files each containing
a description of part of the design. (Ignore user
extension warning).

% cif2ca -1 250 filename.cif

2. Rename the top level Caesar file.

% mv project.ca filename.ca

3. Use Caesar to identify the Caesar file, symbol xx.ca,
that has the wiring in it.
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APPENDIX A

THE MACPITTS INTERPRETER

A. USE OF THE INTERPRETER

The MacPitts interpreter is used to test for syntax and
logical errors in the .mac file. The interpreter creates a
functional environment of the integrated circuit from the
.mac file without actually designing the circuit. This
functional environment can then be simulated.

The interpreter can be invoked by using the following

command :

%» macpitts filename int herald

Filename is the filename of the .mac file without the .mac
extension. Herald is used so that as the MacPitts silicon
compiler reaches a milestone as it is processing the .mac
file, messages are printed to the terminal. Although the
herald statement can be omitted the milestone messages
assure the programmer that the silicon compiler is still
processing the .mac file on long compile runs.

When the interpreter is ready to start processing a
simulation run all registers, ports, processes, flags and
signals defined in the .mac file are listed in a table
on the terminal screen along with their values (see
Figure A.1). The first thirty-six items displayed in the

table are labeled from 0-9 and a-z. The MacPitts
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9. Redesign the data-path so that data can enter or leave
the data-path from either the left or right side to
reduce the length of wire runs from the pads.

10. Redesign the flags block and the data-path organelles
to save wasted space illustrated in Chapter II.
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redesigned to improve circuit speed. A PLA is now used for
all chip control -functions and the Weinberger array is used
only for bit sized boolean functions. The recommended
MacPitts improvements listed below, except for #2, #5 and

#6, have been incorporated in MetaSyn.

B. RECOMMENDATIONS
The following recommendations should be considered to
improve the MacPitts Silicon Compiler:
1. Add super buffers to all input pads.

2. Add super buffers to all data lines leaving the data-
path, sequencer and flags block, and to all clock
lines driving the registers and flags.

3. Redesign the design from to allow pads on all sides.

4. Use channel routing instead of river routing to reduce
the complexity of the Weinberger array.

5. Implement a faster algorithm for design of the
Weinberger array.

6. Redesign the registers and flags so that a more
conventional two-phase clock can be used in MacPitts
designs. This will eliminate the circuit delay of the
last three segments of the MacPitts clock that can not
be used for logic propagation.

7. Redesign the interpreter to make it more user friendly
and able to handle large designs containing many flags,
ports, signals, registers and processes as discussed
in Appendix A.

8. As mentioned in Chapter III, a data-path organelle
should be designed to set and shift data bits of a
data word so that data can be transferred from the
Weinberger array to the data-path.
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attractive alternative when the time required to design a -
circuit is a more important consideration than the speed or
size of the circuit. Until the cause of the alignment errors

discussed in Chapter V is found and corrected, all MacPitts °]

designs must be inspected carefully for the possibility of
alignment errors. Unexpectedly, it was also found that
combinational adder circuits were faster than pipeline adder
circuits because of the MacPitts clocking scheme and the
timing delay caused by the non-super buffered clock lines
driving the registers and flags.

Appendix A gives a complete list of all the MacPitts
interpreter commands and an explanation of their use. In
addition, all interpreter error statements and their
definitions are listed.

In 1983 the developers of the MacPitts silicon compiler
(Siskind, Southard, and Crouch [Ref. 3]) left MIT Lincoln
Laboratory and formed their own company, MataLogic, Inc., to
produce a commercial silicon compiler. Metalogic's current
compiler, called MataSyn, is a redesigned version of the
MacPitts compiler. Most of the design limitations of
MacPitts have been eliminated in MetaSyn. Two of the more
significant improvements in MetaSyn are the redesign of the
interpreter and the Weinberger array. The new interpreter,
now called the simulator, is very flexible and user friendly
and has few of the limitations of the MacPitts interpreter

listed in Appendix A. The Weinberger array has been
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VI. CONCLUSION

A. SUMMARY

l _ The objectives of this thesis were to determine what

the basic circuits in MacPitts designs are and how they are

e

used, to make perlormance comparisons of several different
I adder designs with a hand-crafted adder design and to obtain

a better understanding of the MacPitts interpreter.

The basic building blocks that the MacPitts compiler

uses in circuits were found to be the data-path, the

v T i e e T

sequencer, the flags block and the Weinberger array. The
circuit density and speed of the building blocks were found
I to be low. This was expected since Siskind was quoted in
reference 14 as stating that optimizing chip performance was
not a primary MacPitts design goal. The functional

description of the circuit in the .mac program was found to

PR gL S Rl Vel VA S
. '

have a direct relationship to the circuit structures that

the compiler used to design the circuit.

i It was found that circuits designed by the MacPitts

silicon compiler are very inefficient in terms of the amount

-
b
)

'y
‘o

of circuitry per chip area and that the speed of a MacPitts

) circuit is slow compared to hand-crafted designs. The

significant advantage that MacPitts-designed circuits have

over hand-crafted circuits is the reduction in time required

LI g WAL ST S (G SRAP

| to design the circuit. This makes silicon compilers an

.
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compiler was installed under the UNIX 4.1 operating system.

It is thought that the version of the Franz LISP compiler
- installed under UNIX 4.2 may be causing an unexpected
roundoff or truncation when the compiler calculates the

vertical and horizontal coordinates used to place circuitry

7
- on the chip. Alignment errors can be corrected by using
ﬁ: Caesar.
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the chip clock bus. The flags block of the 5 micron 8-bit
5-stage pipeline adder is placed two lambda too high and
one-half lambda too far left on the chip. Figure 5.6 shows
the two lambda misalignment of the flags block clock lines
and a one-half lambda misalignment of the flags block data
lines. The flags block data lines have a two lambda overlap
with the chip data lines so even with a two lambda vertical
flags block misalignment the data lines are still
electrically connected. A flags block misalignment of eight
lambda in the vertical direction was found in the 4 micron
8-bit S5-stage pipeline adder. Figure 5.7 shows the clock
and data bus alignment errors for this circuit.

The Weinberger array alignment errors are more complex
than the flags block errors. In addition to errors where
the Weinberger array is placed incorrectly on the chip there
are also some internal alignment errors in the array. Figure
5.8 shows three misalignments of the Weinberger array buses
and the chip buses. Also shown is one internal misalignment
where a diffusion line is not properly connected to a pull-up

transistor. Weinberger array alignment errors will be

treated in detail in reference 8.
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The cause of alignment errors is not yet understood.
Alignment errors have only been found in MacPitts designs
since the Macpitts compiler was installed under the UNIX 4.2

operating system. No alignment errors were found when the
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C. ALIGNMENT ERRORS

Alignment errors have been found in the flags block and
the Weinberger array of several different designs. Most of
the alignment errors that were found were identified by
performing a design rule check on the circuit that contained
the errors. The design rule chec¥ program is able to find
the errors because in most cases metal-to-metal,
polysilicon-to-polysilicon or diffusion-to diffusion
separation errors occur.

In the flags block the errors have occurred when the
compiler places the flags block on the chip so that the
internal clock, ground and data buses of the block do not
properly align with the chip clock, ground and data buses.
The misalignment of the flags block has been found in three
designs; the 4 micron 4-bit 5-stage pipeline adder and both
the 4 micron and 5 micron 8-bit 5-stage pipeline adders. In
each case the circuitry inside the flags block has been
designed correctly but the block itself has been placed
incorrectly on the chip.

In the case of the 4 micron 4-bit 5-stage pipeline
adder the flags block was placed two lambda too high in the
circuit. Figure 5.4 shows that the flags block ground bus
does not properly connect with the chip ground bus. In
Figure 5.5 the metal-polysilicon contacts of the flags block

clock lines do not properly align with the metal lines of
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% caesar filename
The Caesar file for the complete data-path/sequencer
may have to be edited in Caesar to identify the file
that contains the last organelle fo the data-path/
sequencer where the wiring error is located. Caesar
can be used to reroute the data lines around the clock
bus via.

4. Edit the top level Caesar file again and create a new
.cif file.

: sa
: cif 248
tq
5. Next, perform a design rule check of the new .cif file.
(Note that the cif command line ends in -qngq not -gng
in the following command).
% cif filename.cif -qnq
% cll filename.co
% drc filename.sco
6. To perform an event simulation on the modified 5 micron
design the procedure listed on page 71 of reference 4
for the 4 micron design should be followed to affix
labels to the bonding pads, obtain a node extract,
and start the simulation run. Insure that the 248
scale is used when creating a new .cif file of a 5
micron design in Caesar (see page 96 of reference 4).
For a micron design that contains wiring errors
the MacPitts design cycle listed on page 70 of reference 4
should be followed. The wiring errors can be corrected,

using the above procedure, at the same time that the labels

are affixed to the bonding pads.
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REGISTERS FLAGS

: a0 = undefined S5: q1 = undefined
2: al = undefined é4: rl = undefined

: sto = undefined 7: carry = undefined

t w2 = undefined

SIGNALS

PORTS b: reset = undefined
8: ain = undefined €: cin = undefined
?: bin = tri-state d: cout = undefined
a: res = undefined
PROCESSES
e: countup = (undefined)
f: countdown = (undefined) i
Ready Value=0

Figure A.1. The Interpreter Screen Display
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interpreter does not have the ability to label more than
thirty-six items so items thirty-seven and higher are not

labeled. At the bottom of the screen a command line is

s 7 m o e -t

displayed. The command line shows the status of the .

interpreter at any time. Possible command line displays are
Ready, indicating that the interpreter is ready to accept a
command, and Clocking, indicating that the interpreter is

performing a functional simulation of the chip through one

or more clock cycles. On the bottom right of the screen the

LI Qv g

contents of a special interpreter register called ''value"

are shown. The value register is used to set ports and !
registers to particular values and also indicates the number 7
of clock cycles a simulation run will execute. i

There is one serious limitation with the interpreter E
that causes it to be unusable for many large chip designs. ;
If the total number of registers, ports and processes 3
defined in the .mac file is greater than twenty there will %
be too many items for the interpreter to display on the E
right side of the terminal screen at once (see Figure A.1). :
Also, if the total number of flags and signals is greater g
than twenty-two there will be too many items for the 5
interpreter to display on the left side of the terminal E
screen at once. Unfortunately, the interpreter continues to ;
try to display those items that will not fit on the screen. N

Since the interpreter is never able to display all items

Rl 3

-

e
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control of the terminal is never turned over to the
programmer for a simulation run. The only way to stop the
interpreter if this happens is to abort the rumn by typing a
control Z.

The interpreter uses information from three different
locations to determine the values of all registers, ports,
signals, flags and processes during a simulation run. The
first location is the ''console" where the programmer, using
the terminal keyboard, can specify the values of the above
items. The second location is the functional environment of
the circuit, called the '"chip'". This is where the
interpreter uses input information from the programmer to
determine the values of the above items. The last location
is called the "environment' and is a programmer specified
functional environment that the programmer may have the
interpreter use during simulation (see the '"e'" command

below).

B. INTERPRETER COMMANDS

All interpreter commands are screen oriented which
means the command is executed as soon as the key is pressed
and a carriage return is not necessary. Table VI gives a
list of the interpreter commands. These commands can be
displayed on the screen by typing "?".

Most of the interpreter commands are self-explanatory

but several require additional explanation. Several commands
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MACPITTS INTERPRETER COMMAND SUMMARY

v e v

- This menu
- Repaint screen
- Put interpreter state to <(file-named.int
- Get interpreter state from <{file-name?>.int
- Enable/Disable environment from <(file-named).env
- Clock system (value> cycle(s)
- Escape to Lisp system
Quit
- Move cursor down
- Move cursor up
- Move cursor to (tag>
- Set flag, input signal, or i/o signal to t
- Set flag, input signal, or i/o signal to f
- Set register, input port, or i/o port to <valued
- Set register, flag, input port, i/o port,
input signal, or i/0 signal to undefined
T ~ Set i/0 port or i/0 signal to tri-state
x - Clear <{value) register to 0
>

G (tag

CVW A VERCO—-NBODT ™
'

~ Negate <value) register
- Enter <(digit> into <value)> register

127
. - -q . PR S N T SN Y M R
- B e e W, e vt . RO A S L S Y CRAN '\k\k\ '-\‘N:..'s:-,\‘\.\-‘n'\‘\'n‘.‘n‘\‘.\"- R
Sl T L UL S DR, UL \ N e \.... A e e T e R T ",
R R R TR AT I PSS 5 0 S 2 v Syttt s SN R A i s Sy




P T T T R R TR A Yy TR reerrerYYY e e

CE A M i 4 i A S A i B A R e SIS e B A g '.'*".1

“w -

|’ -

S
i

-\:: .

o affect only one item on the screen. Before these commands

es 4

can be used the item to be affected must be highlighted by

z

2
t
.

. the inverse cursor. The "j", "k" and '"G" commands are used
E; to move the cursor around the screen. If an adm3a terminal
}; is used instead of a vt1l00 terminal the inverse cursor is

f% not displayed and only the "G" command can be used to place
ig the "invisible" cursor over the item to be affected.

‘x When the registers, ports, processes, flags and signals
%ﬁ are initially displayed on the screen by the interpreter

ii their values are undefined or tri-state if a tri-state port
' or signal is defined in the .mac file. (See Reference 2 for
?i‘ an explanation of the different register, port and signal

jﬁ types.) Before a simulation run is made all input and i/o

;: ports and signals must be set to some initial wvalue. The "t"
iE? and "f" commands are used to set input or i/o signals to

EEE true or false, respectively. The "s'" command is used to set
_). an input or i/o port to the value stored in the value )
Eé register. Another command, the "T" command, can also affect
i% the values of input or i/o ports and signals but has proven
ﬁ;l to be not very useful. If the "T" command is used on an

i; input port or signal, or an i/o port or signal that is used
;; for input only in the .mac program, the port or signal value
';; will be set to a high impedance state (tri-state). The port
‘§i or signal value will stay at high impedance until explicitly
t% set to some value by the programmer using the '"s", "t", or

!! "f'* commands. If an i/o port or signal is used for output
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{ only or both input and output in the .mac program the "T"
command will cause the port or signal value to change to ¥
i undefined.
- The "c" command is used to simulate the functional
environment of the chip. The number of clock cycles
. simulated in one simulation run is indicated by the value
oy register. If O or 1 is stored in the value register only '
one clock cycle will be simulated. |

After a simulation run it may be desirable to store the

- values of all items displayed on the screen. This can be :
" done by using the "p" command. The state of the functional :
f environment is saved in a file called filename.int where f

filename is the same as the filename.mac file. If more than ;
one state is to be saved the programmer must login on
E another terminal and rename the .int file after each state A

- is saved because each new state will be saved in the same

° .int file. '
\‘ -
P The programmer also has the option of specifying the
o functional environment that the interpreter will use to 1
N ()
. simulate a particular .mac file [Ref. 2]. The "e'" command is
i used to enable/disable a functional environment stored in :
E the filename.env file. There is no published information or -
j documentation on the format of the functional environment 1
k in the .env file so this option has never been used at the
"o Naval Postgraduate School. A
2 3
1
S .
- X
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C. INTERPRETER ERROR STATEMENTS

As stated before, the purpose of performing an ’
interpreter simulation is to check for syntax and logical
errors in the .mac file before a full chip design is made by

the MacPitts compiler. Logical errors can be found by

RS bl VAN Ir IS | o AN

.l
PR Y

performing a simulation run and then comparing the results

obtained to those expected. Reference 4, pages 47-49, shows
a good example on how to perform a simulation of a .mac file
using the MacPitts interpreter.

Syntax errors in the .mac file are indicated in one of
two ways by the compiler. First, if the error is severe
enough the compiler stops the creation of the functional
environment and displays an error message on the terminal
screen that will give an indication of the syntax error. The
compiler then returns the UNIX operating system back to
the programmer. An example of a severe syntax error is an
unequal number of open and closed parentheses in the .mac
file. Less severe syntax errors usually do not show up
until initial values are loaded into the input or i/o ports

and signals or until a simulation run is performed. A short

. error message is then displayed on the command line of the

terminal screen.

PR SR

There are over thirty different error messages that the

compiler can display when a syntax error is found. The error

T
[t

.

messages and their meaning are as follows:
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1. Interpreter error 1: the interpreter tried to change

the state (value) of a register but found the current

state to be empty (null), possessing no value. This f
error indicates an improper register definition or ﬁ

3
usage in the .mac file. ]

e

AR g
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2. Interpreter error 2: same as 1 above but for a flag.

R

v
)

3. Interpreter error 3: same as 1 above but for a port.

Interpreter error 4: same as 1 above but for a signal.

CRN,
L4

2.

A AE L
)] L

. Interpreter error 5: Unrecognizable function. Examples

-
-
.

of some expected functions are setq, not, bit, call

E and if. See reference 2 for a listing of all MacPitts
functions.

6. Interpreter error 6: the antecedent of an if statement
is not t, f or undefined as required.

7. Interpreter error 7: the interpreter tried to

determine the state (value) of a register but found the

current state to be empty (null), possessing no value.
. This error indicates an improper register definition

or usage in the .mac file.

2SR
®
L]

Interpreter error 8: same as 7 above but for a flag.
9. Interpreter error 9: same as 7 above but for a process.

10. Interpreter error 10: same as error 7 above but for

Ll o

* T i

a port.
11. Interpreter error 1ll: same as error 7 but for a

signal.

o vemms *ov

.......
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12.

13.

14.

15.

16.

17.

18.

19.

Unrecognizable atomic form: an unknown alpha-numeric
string is in the .mac file. Check for a missing
definition or misspelled word.

Process state out of bounds: the state (value) of

a process is less than zero. Check the .mac file for
a statement improperly setting a process to a value
less than zero.

This process has too many returns: a return from a
subroutine was encountered for which there was no
previous call statement. Check the .mac file for the
correct number of returns or for a missing call
statement.

This process has too many calls: a call to a
subroutine was made but no return statement was found.
Check .mac file for correct number of calls or for a
missing return statement.

Invalid bit selector: the bit selector in the data-
path function "bit" is not between O and the bit size
of the data-path as required.

Too many arguments: all MacPitts functions require
only one or two arguments. Check the .mac file and
Reference 2.

Too few arguments: see 17 above.

A reset signal is needed: a reset signal has not been
defined when the 'process'" form is used in the .mac

file.
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20.

21.

22.

23.

24.

25.

26.

Double signal (port) setg, chip vs. environment:

the interpreter attempts to set a signal (port) to a
value different than that assigned to that signal (port)
by the functional environment from the .env file.
Double signal (port) setq, chip vs. console: the
interpreter attempts to set a signal (port) to a value
different than that assigned to that signal (port) by
the programmer using the '"s", "t" or "f'" commands.
Double signal (port) setq, environment vs. chip:

the reverse of 20 above.

Double register setq: two different setq statements
in the .mac file attempt to assign a value to the
same register at the same time.

Double process setq: same as 23 above but for a
process.

Double port setq: same as 23 above but for a port.
Only one character per character-constant: this
error indicates that an attempt was made to set the
value of a constant to a character string longer than
one character. The value of a constant can be an
integer or a single character. If the value of a
constant is set to a single character the ASCII
equivalent of that character becomes the value of the

constant.

In addition to the above syntax error statements there

are two syntax warning statements. These statements indicate

. e - B L Sl - -
Fat’s <, »’ \'o'\".)\’ fﬁ- J'.' .:‘,\ o $ %
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that there may be a syntax error and caution should be
exercised during the simulation. These warning statements
are:

1. This process has undefined state: the interpreter
has encountered a process in the functional environment
whose state (value) is undefined.

2. Antecedent of if is undefined: the interpreter has
encountered a register, port, signal, process, or flag
in the functional environment being used as the
antecedent of an if statement and whose value is
undefined.

The above two warning statements are common for pipeline
design architectures. Initially the value of the ports,
registers, processes, signals, and flags of each stage of
the pipeline are undefined and will stay undefined until
data is clocked into and out of each stage.

The MacPitts interpreter also displays error statements
in the command line of the terminal screen if an interpreter
command has been executed improperly by the programmer.

The interpreter command error statements are:

1. File not found: .int or .env file cannot be found.

2. Cannot set this thing to value: only registers and
ports can be set to value.

3. Cannot set this thing to t, f: only signals or flags

can be set to t or f.
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4, Cannot set this thing to undefined: processes
cannot be set to undefined.

5. Cannot set this thing to tri-state: only input or
i/o ports and signals can be set to tri-state.

6. Invalid command type ? for help: check interpreter
command list for correct command.

7. Cannot input from this port (signal): check for
input or i/o port (signal).

8. Cannot output to this port (signal): check for
output or i/o port (signal).
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